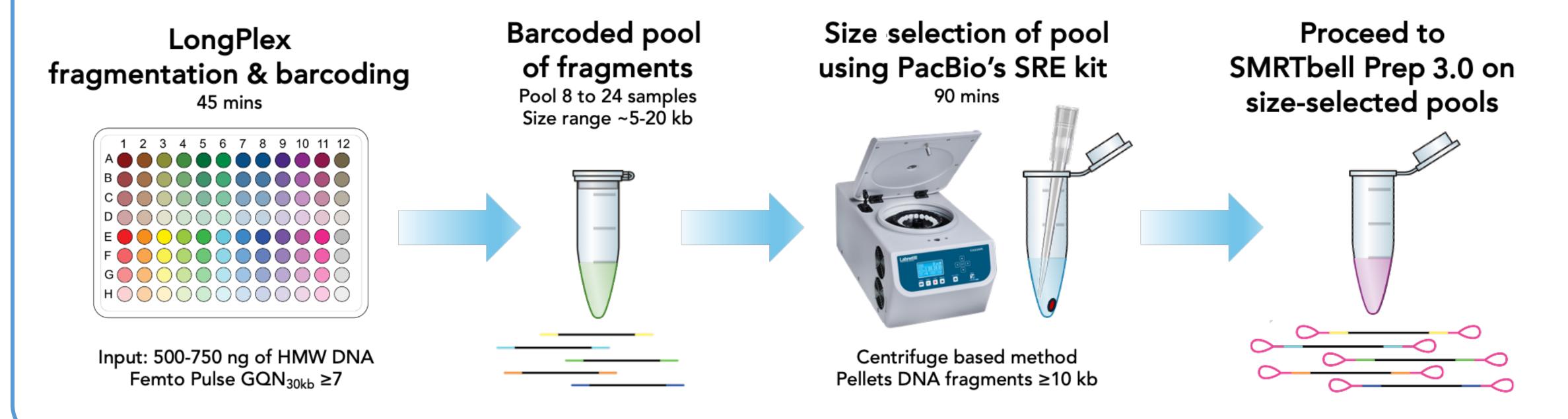
LongPlex[™] XL: An Improved Long-read Tagmentation Workflow for Cost Effective Highly Multiplexed ≥12 kb HiFi Libraries

Maura Costello, Christianto Putra, Zac Zwirko, Gavin Rush, Joe Mellor seqWell, Inc. Beverly, MA USA


Introduction

seqWell introduced the LongPlexTM Long Fragment Multiplexing kit in 2024, utilizing transposase tagmentation to simultaneously fragment and barcode genomic DNA in a fast workflow, enabling pooling of up to 24 samples prior to PacBio[®] SMRTbell[®] library preparation, reducing the overall number of required SMRTbell preps and thus saving time and costs.

The standard LongPlex protocol is optimized to generate libraries with HiFi read lengths between 6-10 kb, ideal for long read targeted capture or for microbial and small genome applications where genomic DNA can often be degraded. However, researchers with high-quality, large molecular weight genomic DNA may wish to generate HiFi read lengths >10 kb to truly take advantage of the gigabase output of PacBio's Revio[™] instrument.

To address this, we developed a modified "LongPlex XL" protocol to prepare multiplexed libraries generating HiFi read lengths ≥12 kb by incorporating PacBio's Short Read Eliminator (SRE) kit to size select fragmented and pooled LongPlex products. Performing pooled size selection prior to SMRTbell library preparation provides a significant workflow advantage and reduces time, effort, and reagent costs vs. traditional fragmentation and sizing methods.

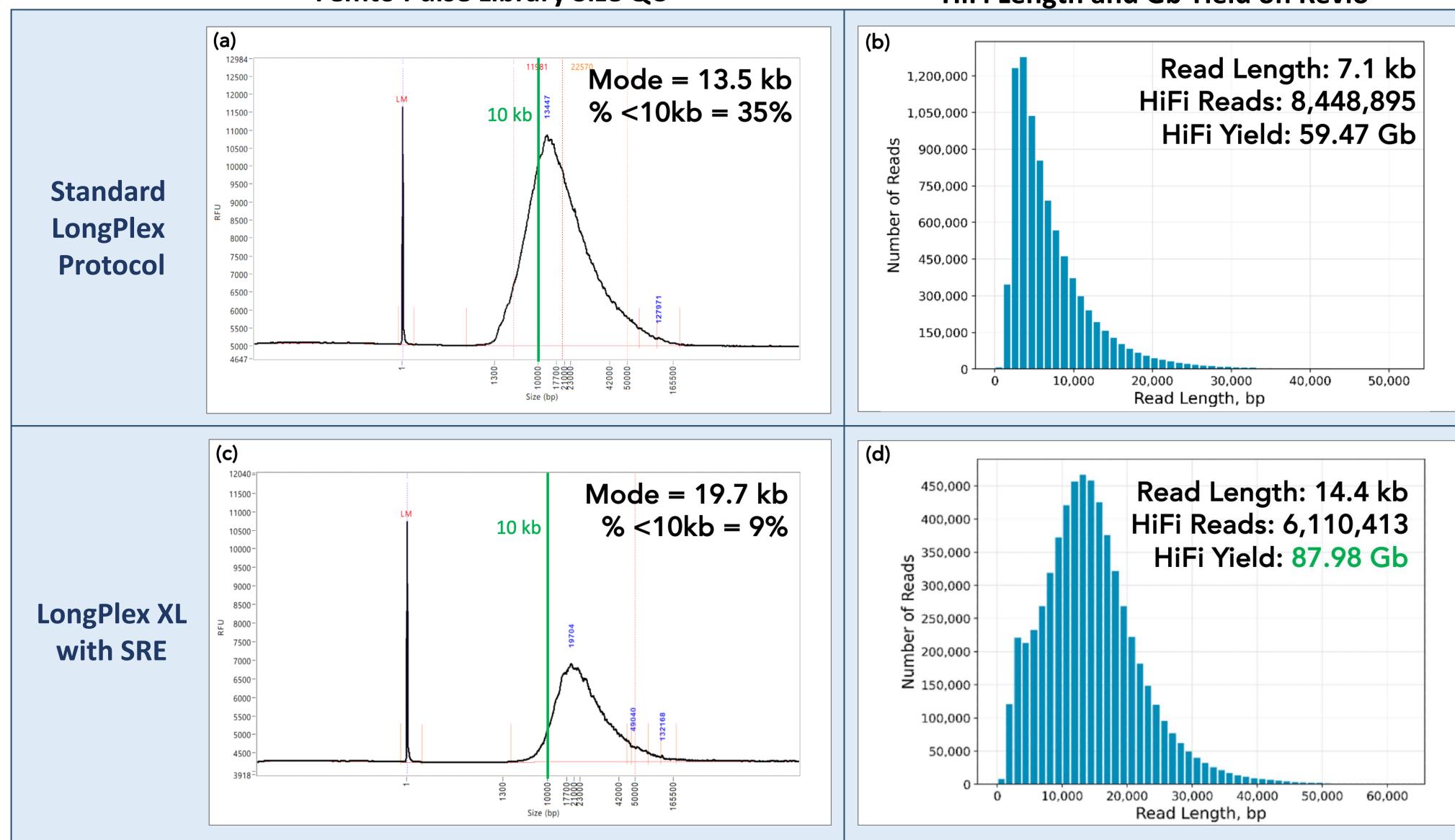
Modified LongPlex XL Workflow

ng of high-quality DNA (Femto Pulse $GQN_{30kb} ≥7$ required) is fragmented and barcoded with the LongPlex kit using a modified tagging reaction with a reduced volume of transposase to generate longer fragments.

The barcoded samples are then pooled (8 to 24 samples per pool) and size-selected to remove fragments <10kb using PacBio's SRE kit following the standard protocol. **High-quality DNA must be used; significant sample loss will occur during SRE with degraded samples.**

Size-selected pools can proceed to the SMRTbell prep kit 3.0 and finally SMRT sequencing.

SMRT Sequencing of Libraries Prepared Using LongPlex XL Protocol


Experimental Design:

- Two sets of 8 replicates using 500 ng of high-quality human control DNA (Promega; GQN_{30kb} = 8.5) were fragmented and barcoded using the LongPlex Kit.
 - One set of 8 was fragmented using the modified "XL" protocol and SRE size selection following tagging and pooling.
 - One set of 8 was fragmented using the standard protocol without size selection.
- Both pools were then processed using the SMRTbell prep kit 3.0 to add SMRTbell adapters (total of 2 SMRTbell libraries), fragment sizes measured via Femto Pulse and sequenced on 2 different Revio SMRT cells to determine the mean HiFi read length of each pooled SMRTbell library.

Femto Pulse Library Size QC

HiFi Length and Gb Yield on Revio

Figure 2: Comparing standard LongPlex to LongPlex XL protocols with high-quality DNA. For 8-plex pool prepared with standard LongPlex protocol: (A) Femto Pulse library fragment size QC and (B) Revio HiFi sequencing read length and yield metrics. The HiFi read length was ~7 kb with a run yield of 59 Gb.

For 8-plex pool prepared with LongPlex XL protocol (C) Femto Pulse library fragment size QC and (D) Revio HiFi sequencing read length and yield metrics. **The HiFi read length was ~14 kb with a total run yield of ~88 Gb.**

Table 1: DNA yield after each step

	Standard LongPlex	LongPlex XL
Post LongPlex 8-plex pool yield	1670 ng*	2226 ng
Post SRE yield		1030 ng
Post SMRTbell yield	609 ng	378 ng

* Standard LongPlex yield is expected to be lower due to an included bead size selection to deplete material <3 kb which is omitted in XL in lieu of SRE size selection.

Conclusions

The <u>modified LongPlex XL</u> protocol with SRE may be the right choice when <u>all</u> the following criteria are met:

- The application requires reads >10 kb and/or more Gb of data
- Input DNA is confirmed high-quality (GQN_{30kb} ≥7 a must), there is ≥500 ng per sample, and the batch size is at least 8 samples.
- Adding 90 minutes to the workflow for SRE is acceptable.
- The lab scientist is experienced with SRE, which can be a difficult method to perform due to the near invisibility of pelleted DNA following centrifugation.

The <u>standard LongPlex</u> protocol without SRE size selection would be the right choice when:

- HiFi read lengths of 6-10 kb are appropriate for the application.
- Input DNA is degraded (GQN_{30kb}<7) or <500 ng per sample.
 - Note: many microbial, microbiome, and environmental samples fall into this category.
- Adding 90 minutes to the workflow for SRE is undesirable.
- Having the ability to automate the workflow from end-to-end is desirable as SRE is a manual, centrifuged-based process.